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Abstract

This study aims to assess the effectiveness of several decision tree machine techniques for identifying formation li-
thology. A total of 20 966 log data points from four wells were used to create the study's data. Lithology is determined
using seven log parameters. The seven log parameters are the density log, neutron log, sonic log, gamma ray log, deep
lateral log, shallow lateral log, and resistivity log. Different decision tree-based algorithms for classification approaches
were applied. Several typical machine learning models, namely the, Random Forest. Random trees, J48, reduced-error
pruning decision trees, logistic model trees, and Hoeffding Tree were assessed using well-logging data for formation
lithology prediction. The obtained results show that the random forest model, out of the proposed decision tree models,
performed best at lithology identification, with precession, recall, and F score values of 0.913, 0.914, and 0.913, respec-
tively. Random trees came next with average precision, recall, and F1 score of 0.837, 0.84, and 0.837, respectively, the J48
model came in third place. The Hoeffding Tree classification model, however, showed the worst performance. We
conclude that boosting strategies enhance the performance of tree-based models. Evaluation of the prediction capability
of models is also carried out using different datasets.
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1. Introduction

Lithology must be established using well-log data to
explore and produce petroleum. The lithology
model of a reservoir can be created by quantitative
analysis of logging data. The high cost of drilling
cores limits the amount of required logging data.
Due to the intricacy of lithology, the distributions of
logging data from distinct lithologies overlap,
expanding the number of possible identifications.
Thus, it is essential to use methods that provide an
accurate means of forecasting lithology.
Researchers have recently become more interested

in applying machine-learning approaches to forecast

different types of lithology.1e3 These approaches to
lithology identification based on machine learning
make an effort to train a multiclass classifier model
based on a large amount of labeled well-logging data
with logging curves, such as gamma ray, resistivity
logs, sonic logs, neutron logs, and density logs.
Various machine-learning approaches have been

proposed for the lithology classification problem. In
lithological identification using logging data points,
an artificial neural network (ANN) was first used to
classify lithology.4,5 Support vector machine (SVM)
was utilized6 to classify the lithology with logging
data points and accurately identify the lithology
facies of heterogeneous sandstone reservoirs.
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Different types of multi-classification SVM were
applied to identify volcanic lithology with well-log
data.7 Random Forest was utilized to predict litho-
logical mapping based on geophysical and
geochemical data.8 In the field of spatial modeling
and classification based on log data. The novel
hybrid inferential system called ANN-hidden Mar-
kov models for lithofacies classification. Approaches
to modeling the rock lithology were developed by
using recurrent neural networks were used.9,10 An
ANN model to identify the lithology of a layer as it
was being drilled using neighboring well data and
real-time drilling data11 from wells in the South Pars
gas field. Using data from the Daniudui and
Hangjinqi gas fields, five common machine learning
techniques e Naïve Bayes, SVM, RF, ANN, and
Gradient Tree Boosting e were assessed for detec-
tion of formation lithology.12

Conventional single classification algorithms such
as decision trees, SVM, and Bayes were developed to
determine the lithology of the Longqian region of
China using well logs.13 In order to predict the
geological facies using well-log data in the Anadarko
Basin, Kansas, supervised learning algorithms, un-
supervised learning algorithms, and a neural network
machine learning algorithm were presented.14

Generative adversarial networks were presented to
recreate thin section images and identify carbonate
lithology.15 An extreme gradient boosting and
Bayesian optimization classifier were proposed for
identifying the lithology of the Daniudui and Hang-
jinqi gas fields.16 Three machine learning algorithms
were presented to determine the lithology while
drilling. Neural networks, RF, extreme gradient
boosting tree algorithms, and one-versus-one SVMs)
are used to create machine learning.17 A coarse-to-
fine architecture that incorporates outlier detection,
multiclass classification, and a tree-based classifier is
suggested for identifying the lithology using two
actual well-logging data sets.18 A novel hybrid
framework combining ANNs and hidden Markov
models for lithological sequence classification pro-
posed by Feng.19. Coal pay zones were predicted
using a variety of machine learning algorithms (LR,
SVM, ANN, RF, and extreme gradient boosting tree)
and data manipulation methods (NROS and
SMOTE).20 Bidirectional gated recurrent units and a
conditional random field layer (Bi-GRU-CRF) are the
models used in the lithological sequence classification
technique that was proposed by Liu et al.21 The
performance of the gradient boosting decision tree
model, which was validated in comparison with the
ANN, SVM, AdaBoost, and RF classifiers, was
demonstrated by Zou et al.22 A Gray Wolf Optimiza-
tionAlgorithm-based automatic identification system

for lithology logging has been presented.23 A study by
Abid et al.24 examined the Khurmala Formation in
Iraq, focusing on its paleoenvironment and microfa-
cies composition. The study identified a diverse
assemblage of microfacies, including coral-algal
wackestone, foraminiferal-peloidal packstone, and
grainstone. The presence of calcareous green algae
suggests a potential link to sea-level changes. Mar-
tyushev et al.25 explored carbonate reef reservoirs in
the Upper Devonian oil fields of Russia, revealing a
cyclic nature controlled by tectonic movements and
sedimentation processes. The study also identified
fracture typeswithin the void space, including calcite-
healed fractures that may affect fluid filtration.
Makarian et al.26 analyzed poroelastic media in a
carbonate formation in southwest Iran, revealing that
water saturation increases compressional wave ve-
locity while decreasing shear wave velocity within the
porous media.27 examined the pore properties of
various lithofacies within the Lianggaoshan Forma-
tion, a significant shale oil producer in Northeast
Sichuan. ORLAS and OLLSS exhibited superior
reservoir qualities compared to SM and FS, but sili-
ceous minerals negatively impacted reservoir prop-
erties. Characterization of reservoirs and evaluating
the efficacy of machine learning models in predicting
lithofacies across diverse geological settings is para-
mount. This research investigates the application of
various decision treemachine learning algorithms for
the automated identification of rock formations
(lithology) based on well-log data. The primary objec-
tive is to evaluate the effectiveness of these techniques
in accurately classifying different lithological types.

1.1. Used well-logging data

The evaluation employed a dataset of 20 966 well
data points, including log and cutting data from four
wells in the Camal oil field. This dataset encom-
passed seven logging parameters [density log
(RHOB), neutron log (NPHI), sonic log (DT), gamma
ray log (GR), deep latero log (LLD), shallow latero
log (LLS), and resistivity log (ML)] with corre-
sponding depths. The output class to be identified is
the type of lithology (shale, sand, sandstone, lime-
stone, or dolomite). The range of the seven feature
parameters is listed in Table 1. To assess the model's
performance, we conducted evaluations on three
distinct datasets, where each dataset reflected vari-
ations in the input parameters.

2. Machine learning models

To classify lithology in this study, we employed six
machine learning algorithms based on decision

A.M. Al-khudafi et al. / Egyptian Journal of Petroleum 33 (2024) 450e460 451



trees: Random Forest (RF), Random Trees (RT), J48,
Reduced-Error Pruning Trees (REPT), Logistic
Model Trees (LMT), and Hoeffding Trees (HT).
Fig. 1 illustrates the proposed lithology classification
methods.

2.1. Decision tree

Three nodes make up a decision tree, which is a
classification method: the leaf node, the branch
(edge or link), and the root node. The test conditions
for various attributes are represented by the root, all

possible test outcomes are represented by the
branch, and the labels of the classes to which the
leaf nodes belong are present. The beginning of the
tree sometimes referred to as the top of the tree, is
home to the root node. A decision tree is a hierar-
chical decision support model that uses a tree-like
model of decisions and their potential re-
percussions, such as utility, resource costs, and
chance event outcomes. It's one method of pre-
senting an algorithm with just conditional control
statements. In operations research, decision anal-
ysis, in particular, decision trees are frequently
utilized.

2.2. Random forest

Known also as random decision forests, random
forests are an ensemble learning technique that
builds a large number of decision trees during the
training phase for tasks like regression and classi-
fication. The class that the majority of the trees
choose is the random forest's output for classifica-
tion problems. The mean or average prediction

Table 1. Range of parameters for lithology classification.

Parameters Maximum Minimum SD Mean

ML 1952.27 0.23 273.34 112.99
LLD 2064.76 0.23 63.72 29.74
LLS 2064.76 0.22 100.03 33.60
Depth 6100 520 1555 3421
GR 139.37 7.87 21.36 43.69
RHOB 2.95 1.94 0.18 2.28
NBHI 0.45 0.01 0.10 0.27
DT 141.76 38.71 17.87 91.54
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Fig. 1. Workflow for evaluation machine learning model.
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made by each tree is returned for regression tasks.28

The tendency of decision trees to overfit their
training set is compensated for by random decision
forests. Although they are less accurate than
gradient-boosted trees, random forests still perform
better than choice trees in most cases. The perfor-
mance of the system may be contingent upon the
characteristics of the data it processes.

2.3. Reduced-error pruning decision tree

In machine learning and search algorithms,
pruning is a data compression approach that mini-
mizes the size of decision trees by eliminating
nonessential and redundant portions, for instance,
classification (Matti, 2003). Pruning decreases over-
fitting, which lowers the complexity of the final
classifier and increases predictive accuracy.
Reduced error pruning is one of the most straight-
forward types of pruning. Every node, starting from
the leaves, gets swapped out for its most popular
class. The adjustment is retained if there is no
impact on the prediction accuracy. Reduced mistake
trimming gives performance and simplicity benefits,
although being a little naïve.

2.4. Logistic model tree

Combining logistic regression (LR) and decision
tree learning, the logistic model tree is a classifica-
tion model that comes with a corresponding su-
pervised training algorithm.29 The concept of a
logistic model tree is derived from the previous
concept of a model tree, which is a decision tree
with linear regression models at the leaves that
generates a piecewise linear regression model
instead of the piecewise constant model that would
be produced by regular decision trees with con-
stants at the leaves.29

2.5. Hoeffding Tree

One decision tree learning technique for classi-
fying stream data is the Hoeffding Tree algorithm.
An application of the incremental decision tree al-
gorithm is the Hoeffding Tree. Originally, it was
used to monitor clickstreams on the internet and
build models to forecast which hosts and websites a
user is most likely to visit. It usually produces a
decision tree that is almost the same as that of
standard batch learners and runs in sublinear time.
It makes use of Hoeffding Trees, which make use of
the fact that selecting the best splitting attribute is
frequently possible with a small sample size. The
Hoeffding bound, often known as the additive

Chernoff bound, provides mathematical support for
this theory.

2.6. J48 classifier

The c4.5 algorithm, developed by Ross Quinlan, is
a prominent method for generating decision trees in
machine learning. It falls under the category of in-
formation-theoretic classification algorithms, utiliz-
ing information gain to construct the tree structure.
C4.5 builds upon Quinlan's earlier id3 algorithm,
also known as j48. The primary function of c4.5 lies
in classification tasks, where it leverages decision
trees to assign data points to specific categories.30

3. Data preprocessing of well logs

Using seven logging features e density log,
neutron log, sonic log, gamma ray log, deep latero
log, shallow latero log, and resistivity log e a total of
20 966 well log data points were used for lithology
classification.

3.1. Outlier removal

One of the main challenges is the presence of out-
liers and extremes in the dataset, which can deterio-
rate the performance of classifiers. Thus, the
technique of unsupervised learning was applied to
identify outliers within the dataset. These data sam-
ples might have come from contaminated or incor-
rectly entered logging parameters by hand. Finding
data samples that differ from the distribution of the
majority of data is the goal of outlier identification.
Outliers and extremes sometimes deteriorate the
performance of classifiers that cannot be used in a
dataset. For this purpose, the interquartile range
(IQR) and local outlier factor (LOF) filters were
applied. The IQR filter detects outliers and extreme
values. Then, the filter removal with value was
implemented to remove outliers and extremes from
data sets. The IQR filter is better than other available
filters because it is a robustmeasure of variability that
is not affected by extreme values or outliers. Addi-
tionally, it may be applied to a variety of datasets and
is simple to use. LOF identifies an outlier based on the
local neighborhood, which means it considers the
density of the neighborhood to identify an outlier.
Because it can detect outliers in a dataset that would
not be outliers in another part of the dataset, the LOF
algorithm outperforms alternative filters that are
currently on themarket. TheLOF is shown toperform
better for anomaly detection than many other
methods and can also be utilized to construct a
distinct dissimilarity function. Experiments were
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conducted to evaluate the performance of both filters.
According to the results, all classifiers have a higher
prediction accuracy for the LOF filter.

3.2. Manage imbalanced dataset

Another challenge is the imbalanced dataset,
which can lead to overfitting or underperformance
of the model. To address imbalanced data and
prevent overfitting or underperformance, we
applied the Synthetic Minority Over-Sampling
Technique (SMOTE). By increasing the proportion
of minority instances in the dataset, this technique
maintained balance and enhanced algorithm per-
formance. We employed the SMOTE function31

specifically to tackle class imbalance issues related
to different lithology types, enhancing lithology
prediction model performance. The application of
the SMOTE method improved the model's perfor-
mance. For the random forest model, for instance,
oversampling raised accuracy from 88.2 to 92.1%.

3.3. Normalization

Data normalization is also a crucial step in the
analysis, as logging indicators have varying di-
mensions. Since logging indicators have varying
dimensions, we performed data normalization after
data collection, mining, and quality control. This
step ensures consistency and allows us to combine
dimensionless data to create new analysis in-
dicators. All of the dataset's numerical values were
standardized to fall between 0 and 1 before the
machine learning model was trained.

4. Predictive model building

Building the model for lithofacies prediction
involved several steps, including data preprocessing,
feature selection, model training, hyperparameter
tuning, and validation. The dataset used consisted of
well log and cutting data points from four wells, with
seven logging parameters and corresponding depths.
Data preprocessing involved outlier removal,
normalization, and attribute selection. Outlier
removal was done using unsupervised learning to
identify and remove data samples that might have
come from contaminated or incorrectly entered log-
ging parameters. Normalization was performed to
ensure consistency and allow for the combination of
dimensionless data to create new analysis indicators.
All numerical values in the dataset were standardized
to fall between 0 and 1 before training the machine
learning model. Feature selection was carried out to
evaluate the importance of the features for the

prediction models. Four algorithms were recom-
mended in conjunction with rankers, which rank at-
tributes by their evaluations. The major features
contributing to lithology prediction were determined
based on attribute rank. Different decision tree-based
algorithms for classification approaches were
applied. The prediction model was trained using the
training dataset (80%), and it was tested using the test
dataset (20%). The classification models were also
constructed using a 10-fold cross-validation tech-
nique. Hyperparameters were tuned using a 10-fold
cross-validation method to optimize machine-
learning models for lithology identification. The best
hyperparameter set for thesemodels was determined
by evaluating the influence of various hyper-
parameters on model performance. The optimal
hyperparameters were used to construct the model
classifier using 10-fold cross-validation, with nine
subsets of the training datasets chosen for model
training and hyperparameter tuning and one subset
used for model validation. A cross-validation accu-
racy curve was utilized to find the best hyper-
parameters for the tree model. Validation techniques
employed to ensure the robustness and generaliza-
tion of the predictive models included 10-fold cross-
validation and performance evaluation using various
evaluation metrics. Every classification model was
assessed using 10-fold cross-validation.

4.1. Hyperparameters

Hyperparameters are parameters that control the
learning process in machine learning models. Unlike
other parameters, such as node weights, which are
learned during training, hyperparameters are set
beforehand.32 They can be categorized as model
hyperparameters, which influence model selection,
or algorithm hyperparameters, which affect the
learning process's speed and quality. Model hyper-
parameters include factors like neural network to-
pology and size, while algorithm hyperparameters
encompass settings like learning rate, batch size, and
mini-batch size. Different machine learning algo-
rithms require specific hyperparameters, and tuning
them is crucial for adapting models to specific data-
sets.33 Tree depth and the total number of trees in a
random forest are two instances of hyperparameters
for tree models, and learning-related settings like the
learning rate, batch size, and mini-batch size.

4.2. Tuning hyperparameter

This study utilized hyperparameter tuning to
optimize machine-learning models for lithology
identification.
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A 10-fold cross-validation method was employed
to find the best hyperparameter set for these
models. This approach evaluated the influence of
various hyperparameters on model performance
and emphasized the importance of hyperparameter
tuning in machine learning. The optimal hyper-
parameters for the tree model were determined
based on the cross-validation results.
In order to construct the model classifier, 10-fold

cross-validation was used, and the hyperparameters
were optimized. A 10-fold cross-validation proced-
ure was employed. The training data was randomly
divided into 10 equally sized folds. In each iteration,
nine folds were used to train and tune the model's
hyperparameters, while the remaining fold was
reserved for validation.

4.3. Attribute selection

Attribute selection is also an important pre-
processing technique for quality control and data
mining. The impact of parameter correlation on li-
thology detection model performance is investi-
gated. We hypothesize that by employing data
mining techniques for feature selection, we can
identify the most influential parameters for accurate
lithology classification. This approach will not only
reduce the dimensionality of the input data, miti-
gating the risk of overfitting but also enhance the
overall forecasting accuracy of the model. In this
study, the importance of the features was evaluated
for the prediction models. For selecting the log pa-
rameters, four algorithms were recommended in
conjunction with rankers, which rank attributes by
their individual evaluations. According to attribute
rank, the major features contributing to lithology
prediction were determined. The algorithms used
include InfoGain, Relief, and OneR. The results are
presented in Fig. 2.
As indicated in Fig. 2, analysis of feature impor-

tance scores suggests that depth is the most prom-
inent factor influencing the model's predictions.
This implies a prioritization of depth for accurate
model outputs. However, it is crucial to acknowl-
edge the relative nature of feature importance. Even
features like NBHI, with the lowest score, might
contribute to the model's decision-making process.
Furthermore, limitations inherent to feature
importance scores warrant consideration. These
scores merely quantify a feature's internal signifi-
cance to the model, not necessarily its real-world
relevance. A seemingly important feature could be
highly correlated with another that holds the true
causal relationship with the outcome variable. To
investigate the models' generalizability in predicting

across diverse log parameter settings, we employed
classification on eight functional datasets (Table 2).
Fig. 3 summarizes the interactions between

various well-logging features and the various
modeling performances. There are no statistically
significant differences among the other algorithms
in terms of their sensitivity to these properties,
except for the HT model, which shows poor overall
precision. Remarkably, for all combinations of input
variables, RF model consistently produces optimal
results across all sets. The relationship between
different model accuracies and the quantity of log
parameters is shown in Fig. 4. This figure explores
the relationship between the number of logging
parameters employed and the resulting accuracy of
lithology prediction models.
Results in Fig. 4 indicate that a core set of four well

logs, namely density, neutron, sonic, and gamma-
ray, can be effectively utilized for lithology identi-
fication. The average accuracy across all models
exhibited a positive correlation with the number of
logging parameters, reaching a peak at six param-
eters. A slight decline in accuracy was observed with
seven parameters. These findings highlight the
importance of incorporating a sufficient number of
logging parameters during model development.
However, it is crucial to avoid overfitting by
employing a balanced parameter selection strategy.
The optimal number of parameters is likely dataset-

Fig. 2. Visualization of feature importance scores.

Table 2. Functional form characteristics of datasets.

Datasets Log parameters

1 Depth, RHOB, GR, LLD
2 Depth, RHOB, GR, LLD, ML
3 Depth, LLD, ML
4 Depth, DT, LLD, LLS, ML
5 Depth, NBHI, RHOB, GR
6 Depth, NBHI, RHOB, GR, DT
7 Depth, RHOB, GR, LLS
8 Depth, RHOB, GR, LLS, ML
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dependent and model-dependent. Nevertheless,
this study suggests that using approximately six
logging parameters serves as a valuable starting
point. The observed improvement in accuracy with
an increasing number of parameters can be attrib-
uted to the enhanced information content provided
by these parameters, enabling the models to make
more precise predictions about the rock formations.

5. Results and discussion

5.1. An evaluation of model performance using
metrics

In this study, various evaluation metrics were
used to assess the performance of classification
models. These metrics included classification accu-
racy (E), precision (Pr), recall (R), F-measure (F1),
ROC area, and the PRC area in order to more
thoroughly assess the effectiveness of the learning

model and the impact of lithology identification.
Every classification model was assessed using 10-
fold cross-validation. Table 3 presents the perfor-
mance metrics for the evaluated models.
Based on our investigation of classifier perfor-

mance, we found the random forest model to be the
standout performer (Table 3). This is evidenced by
its exceptional classification accuracy, achieving a
remarkable 92% during cross-validation and a very
close 91.35% for training data. The RF model's
strength lies in its ability to accurately identify
sandstone and dolomite samples, as demonstrated
in Table 4. Following closely behind the RF model
was the J48 model, securing an average precision of
0.848, recall of 0.85, and F-measure of 0.848 (Table 3).
The remaining models exhibited lower overall per-
formance. The HT model yielded the least desirable
results, while the RT model positioned itself as the
second-best alternative to the RF model.
This analysis underscores the effectiveness of the

RF model for rock type classification, particularly for
identifying sandstone and dolomite. Future research
could delve deeper into the importance of features
within the RF model to gain a more nuanced un-
derstanding of its decision-making process.
The results presented in Table 4 demonstrate that

the RF model achieved superior performance
compared to other classifiers in distinguishing spe-
cific lithology types, such as shale (Sh), sandstone (S),
siltstone (SS), limestone (LS), and dolomite (DM).

Fig. 3. Performance of model with different parameter sets.

Fig. 4. Influence of logging parameters on lithology prediction.

Table 3. Summary of evaluation metrics for various models (cross-
validation and training results).

Model Data set Pr R F1 ROC PRC

RT CV 0.895 0.896 0.895 0.927 0.832
TR 0.901 0.902 0.901 0.935 0.84

RF CV 0.919 0.92 0.919 0.988 0.972
TR 0.913 0.914 0.913 0.985 0.967

REPT CV 0.83 0.833 0.831 0.943 0.857
TR 0.798 0.798 0.798 0.924 0.827

LMT CV 0.835 0.836 0.835 0.927 0.857
TR 0.833 0.833 0.833 0.928 0.856

J48 CV 0.848 0.85 0.848 0.897 0.800
TR 0.837 0.84 0.837 0.891 0.792

HT CV 0.452 0.552 0.427 0.614 0.42
TR 0.525 0.538 0.516 0.737 0.555

Table 4. Performance of the random forest model on each lithology class
(cross-validation results).

Class Pr R F1 ROC PRC

Sh 0.894 0.823 0.857 0.979 0.939
S 0.919 0.95 0.934 0.987 0.983
SS 0.92 0.92 0.92 0.995 0.973
LS 0.927 0.94 0.933 0.997 0.981
DM 0.976 0.993 0.985 1 0.996
Average 0.919 0.92 0.919 0.988 0.972
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5.2. Confusion matrix

To evaluate the performance of various models in
classifying lithofacies, a confusion matrix was
employed. This matrix offers a detailed breakdown
of classification accuracy, presenting the percentage
of correctly identified instances for each lithology
class. Additionally, it provides insight into mis-
classifications, revealing cases where specific lith-
ofacies were incorrectly assigned to other categories.
The optimal technique-derived confusion matrix for
the lithologic classes is presented in Table 5.
Evaluation of the confusion matrix (Table 5)

revealed varying performance in classifying data
points. Notably, the model performs well at identi-
fying instances belonging to the Sh class, achieving

high precision (low false positive rate) across all
models. This translates to a high level of confidence in
Sh predictions, withmost being accurate. Conversely,
the model exhibited a significant challenge with the
DMclass, reflected by a high false negative rate across
all models. This indicates a frequent misclassification
of DM instances, assigning them to other categories.
Furthermore, differentiation between LS and DM
presented a particular difficulty, especially in models
LMT and RT. These findings suggest a need for
further investigation to enhance classifier perfor-
mance, particularly for classesDMandLS. In essence,
themodels demonstratedmixed success in data point
classification.While the Sh class received exceptional
treatment, the model struggled with DM and dis-
tinguishing between LS and DM.

Table 5. Performance evaluation of optimized classifiers using confusion matrices (cross-validation) a e HT, b e J48, c e LMT, d e RT, e � RF, f e
REPT.

Actual label Sh 1.57 24.29 0.08 0.16 0.58
S 1.14 50.59 0.15 0.08 0.24
SS 0.32 7.55 0.11 0.09 0.20
LS 1.24 4.62 0.19 3.69 1.76
DM 0.22 4.94 0.21 2.17 3.31

Sh S SS LS DM
Predicted label (a)

Actual label Sh 22.84 3.33 0.34 0.62 0.02
S 2.28 49.52 0.52 0.02 0.01
SS 0.56 1.08 6.55 0.15 0.03
LS 0.36 0.01 0.12 11.08 0.10
DM 0.04 0.03 0.04 0.11 1.13

Sh S SS LS DM
Predicted label (b)

Actual label Sh 21.73 3.82 0.36 0.76 0.00
S 2.88 48.67 0.62 0.01 0.01
SS 0.64 1.27 6.12 0.19 0.05
LS 0.52 0.03 0.15 10.73 0.07
DM 0.04 0.02 0.06 0.14 1.09

Sh S SS LS DM
Predicted label (c)

Actual label Sh 17.77 4.77 0.94 0.81 0.07
S 4.50 41.57 1.46 0.10 0.07
SS 0.98 1.57 4.71 0.21 0.08
LS 0.77 0.14 0.24 9.17 0.17
DM 0.07 0.06 0.06 0.08 9.64

Sh S SS LS DM
Predicted label (d)

Actual label Sh 21.36 4.25 0.25 0.80 0.00
S 1.95 49.93 0.31 0.00 0.01
SS 0.83 1.76 5.45 0.21 0.02
LS 0.25 0.07 0.09 11.00 0.09
DM 0.07 0.04 0.03 0.10 1.11

Sh S SS LS DM
Predicted label (e)

Actual label Sh 19.35 3.96 0.31 0.73 0.00
S 2.69 44.47 0.50 0.01 0.02
SS 0.74 1.34 5.28 0.15 0.05
LS 0.38 0.05 0.12 9.85 0.10
DM 0.02 0.03 0.01 0.03 9.80

Sh S SS LS DM
Predicted label (f)
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5.3. Boosting-based approach

To improve model performance, we utilized
ensemble learning techniques, specifically focusing
on AdaBoost meta-learners in conjunction with
classification tree models. The effectiveness of this
approach is evaluated through various performance
metrics, including precision, recall, F1-score, area
under the precision-recall curve, and area under the
ROC curve. These metrics are presented for
different models trained and cross-validated, with
average and weighted average values provided in
Table 6 and Fig. 5, respectively.
The J48 decision tree model fared better than all

other models in terms of precision, recall, F1, ROC
AUC, and PRC, as shown in Table 6 on both the
training set and cross-validation sets. This suggests
that J48 performs a better job of accurately classi-
fying events into the relevant groupings. The J48
models performed better than the LMT, REPT, and
RF models in the validation and training sets, but
their metrics were a little behind. The HT model, on
the other hand, performed substantially worse than
the other models, particularly in the cross-validation
set. This pattern indicates that the HT model may

have overfitted the training data. Similarly, in both
the training and validation sets, the RT model per-
formed worse on a variety of criteria, particularly
the PRC indicator. The assessment findings clearly
show that the J48 decision tree model performs
better overall across all metrics and data sets. This
indicates that J48 is effective in correctly categoriz-
ing data points into the appropriate groups.
Fig. 5 illustrates the performance of various

ensemble models utilizing boosting with different
base learners, including REPT, LMT, J48, and HT.
The results suggest that boosting generally leads to
improved performance metrics. Notably, boosting
with the J48 decision tree classifier achieved the
most favorable outcomes. Conversely, the combi-
nation of AdaBoost with the RT classifier yielded
inferior results compared to other ensemble con-
figurations. It is important to acknowledge that
some models exhibited limited responsiveness or
even negative reactions to the application of per-
formance-enhancing techniques. To assess the pre-
dictive capabilities of the models, three datasets
(Set-1, Set-2, and Set-3) were employed. Fig. 6 de-
picts the prediction accuracy achieved by different
algorithms on these diverse datasets.
Based on analysis, there was no significant differ-

ence in accuracy between Set-3 and Set-1. Across
both datasets, the J48 model performed best, fol-
lowed by the LMTmodel. On the other hand, the HT
model consistently exhibited the lowest accuracy.
For all models, Set-3 yielded the highest accuracy.
Furthermore, J48, LMT, REPT, and RF consistently
performed across various datasets. However, the HT
model remained the least accurate across all three
datasets. The J48 decision tree model consistently
achieved the highest accuracy in all three datasets.
Hence, J48 may be a good choice for these datasets

Table 6. Boosting model performance (cross-validation and training).

Model Data set Pr R F1 ROC PRC

HT TR 0.469 0.547 0.436 0.584 0.389
CV 0.475 0.541 0.444 0.616 0.405

J48 TR 0.897 0.898 0.897 0.978 0.953
CV 0.91 0.911 0.91 0.981 0.959

LMT TR 0.89 0.891 0.89 0.975 0.944
CV 0.882 0.883 0.882 0.971 0.944

REPT TR 0.883 0.885 0.883 0.972 0.942
CV 0.886 0.888 0.886 0.974 0.943

RF TR 0.892 0.893 0.89 0.981 0.958
CV 0.888 0.888 0.886 0.979 0.958

RT TR 0.823 0.822 0.823 0.869 0.738
CV 0.828 0.829 0.828 0.872 0.743

Fig. 5. A description of all algorithm's performance metrics-Boosting
method.

Fig. 6. Prediction of the performance of different models using various
datasets.
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and prediction tasks. On Set-3, all models except HT
are more accurate than on Set-1. Set-3 appears to be
easier to learn from, perhaps because it has a clearer
structure or better-quality data. The HT model
consistently has the lowest accuracy across all data-
sets. This suggests that the HT model is not well-
suited for these prediction tasks, perhaps because it
is unable to recognize data patterns.
Although the field of machine learning offers

promising prospects for accurate and efficient li-
thology identification, its application presents
several noteworthy challenges. These challenges
include the presence of outliers and data extremes,
imbalanced datasets, inconsistencies in the dimen-
sionality of logging indicators, and the crucial steps
of hyperparameter tuning and attribute selection.
However, by effectively addressing these limitations,
ML techniques can be applied to achieve robust and
streamlined lithology identification processes.
Overall, the implications of this research suggest

the application of tree-based machine learning l
analysis in petroleum exploration and production
operations.

5.4. Conclusions

This research underscores the significance of
employing advanced machine learning techniques,
data preprocessing methods, hyperparameter tun-
ing, and attribute selection to enhance the accuracy
and efficiency of lithofacies prediction in reservoir
rocks, particularly in the context of the Camal oil
field in Yemen. The study evaluated several machine
learning models, with the random forest model
demonstrating the best performance in lithology
identification, achieving precision, recall, and F1-
score values of 0.913, 0.914, and 0.913, respectively.
Random trees and the J48 model followed in per-
formance, while the Hoeffding Tree model showed
the least effectiveness. This study investigated the
combined effect of boosting techniques and dimen-
sionality reduction on decision tree models for lith-
ofacies prediction. The results demonstrated a
significant improvement in model performance
when boosting was incorporated with decision trees.
Furthermore, the influence of various dimensionality
reduction methodologies on prediction accuracy was
explored. These findings emphasize the crucial role
of model optimization techniques, particularly
boosting algorithms and hyperparameter tuning, in
enhancing the effectiveness of tree-based models for
lithofacies classification. The study employed outlier
removal techniques, normalized data, and addressed
imbalanced datasets using the SMOTE to enhance
model performance and accuracy.

The findings provide valuable insights for the oil
and gas industry in optimizing lithology identifica-
tion processes using tree-based machine learning
models. The prospects for the development of the
approaches presented in the research paper are
promising, with opportunities for further innova-
tion, integration of advanced algorithms, utilization
of big data analytics, automation of prediction sys-
tems, and interdisciplinary collaboration. These av-
enues hold the potential to revolutionize lithofacies
prediction in the oil and gas industry, leading to
more accurate reservoir characterization and
improved decision-making processes.
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